4.6 Article

Nonlinearities and carrier dynamics in refractory plasmonic TiN thin films

期刊

OPTICAL MATERIALS EXPRESS
卷 9, 期 10, 页码 3911-3924

出版社

OPTICAL SOC AMER
DOI: 10.1364/OME.9.003911

关键词

-

资金

  1. Virginia Microelectronics Consortium
  2. Virginia Commonwealth University Presidential QUEST Fund
  3. National Science Foundation [1120923]
  4. Air Force Office of Scientific Research [FA955017-1-0243]
  5. Division Of Materials Research
  6. Direct For Mathematical & Physical Scien [1120923] Funding Source: National Science Foundation

向作者/读者索取更多资源

Titanium nitride is widely used in plasmonic applications, due to its robustness and optical properties which resemble those of gold. Despite this interest, the nonlinear properties have only recently begun to be investigated. In this work, beam deflection and non-degenerate femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse saturable absorption whose relaxation is dominated by slow thermal diffusion into the substrate lasting several hundred picoseconds. Ultrafast contributions arising from hot-electron excitations are found to be a small part of the overall response, only appearing significant in the TiN on fused silica at irradiance levels above 100 GW-cm(-2). The modeling and origin of this response is discussed, and TiN is found to be adept at achieving ultrafast (below 1 ps) lattice heating which, combined with the robustness and low-cost of the material may prove useful in various thermo-optical applications such as local heating, heat-assisted processes, and nanoscale heat transfer. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据