4.6 Article

Different Radiation Tolerances of Ultrafine-Grained Zirconia-Magnesia Composite Ceramics with Different Grain Sizes

期刊

MATERIALS
卷 12, 期 17, 页码 -

出版社

MDPI
DOI: 10.3390/ma12172649

关键词

ZrO2-MgO; ultrafine grain; irradiation; He bubble; phase transformation

资金

  1. National Science Fund for Excellent Young Scholars [11522543]
  2. Natural Science Foundation of China [11875207, 11475129, 51571153, 11935011, 11905058]
  3. Natural Science Foundation of Hubei Province, China [2016CFA080]
  4. Scientific and Technological Innovation Projects in Hunan [2018GK2064]
  5. Fundamental Research Funds for the Central Universities
  6. Center for Integrated Nanotechnologies (CINT), a DOE Office of Science User Facility

向作者/读者索取更多资源

Developing high-radiation-tolerant inert matrix fuel (IMF) with a long lifetime is important for advanced fission nuclear systems. In this work, we combined zirconia (ZrO2) with magnesia (MgO) to form ultrafine-grained ZrO2-MgO composite ceramics. On the one hand, the formation of phase interfaces can stabilize the structure of ZrO2 as well as inhibiting excessive coarsening of grains. On the other hand, the grain refinement of the composite ceramics can increase the defect sinks. Two kinds of composite ceramics with different grain sizes were prepared by spark plasma sintering (SPS), and their radiation damage behaviors were evaluated by helium (He) and xenon (Xe) ion irradiation. It was found that these dual-phase composite ceramics had better radiation tolerance than the pure yttria-stabilized ZrO2 (YSZ) and MgO. Regarding He+ ion irradiation with low displacement damage, the ZrO2-MgO composite ceramic with smaller grain size had a better ability to manage He bubbles than the composite ceramic with larger grain size. However, the ZrO2-MgO composite ceramic with a larger grain size could withstand higher displacement damage in the phase transformation under heavy ion irradiation. Therefore, the balance in managing He bubbles and phase stability should be considered in choosing suitable grain sizes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据