4.6 Article

Preliminary Characterization of Novel LDPE-Based Wear-Resistant Composite Suitable for FDM 3D Printing

期刊

MATERIALS
卷 12, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/ma12162520

关键词

FDM printing; glass wastes; low-density polyethylene; composite; friction; wear

资金

  1. Silesian University of Technology [11/030/RGJ19/0231]

向作者/读者索取更多资源

Low-density polyethylene (LDPE) composites reinforced with finely powdered waste glass were identified as a potential material for 3D printed structures for use in low-duty frictional applications. A recently published 3D printing model was used to calculate the limits in the filament feed rate and printing speed. Tribological tests (pin-on-disc method) of the printed composites were performed for different print-path directions. Differential scanning calorimetry (DSC) was performed on the samples and the composites showed a higher crystallinity compared with LDPE, which partially explains the higher elastic modulus of the composites determined during static tensile tests. Using a fine glass powder as reinforcement improved the wear resistance of LDPE by 50% due to the formation of a sliding film on the sample's surface. An evident effect of friction direction vs. the printed path direction on wear was found; which was likely related to differences in the removal of friction products from the friction area for different print-path directions. The LDPE composites with fine waste glass particles are promising materials for low-duty frictional applications and should be the subject of further research.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据