4.6 Article

System configuration optimization for mesoscopic fluorescence molecular tomography

期刊

BIOMEDICAL OPTICS EXPRESS
卷 10, 期 11, 页码 5660-5674

出版社

Optica Publishing Group
DOI: 10.1364/BOE.10.005660

关键词

-

资金

  1. National Institutes of Health [R01 BRG-CA20772, R01-EB019443]
  2. Natural Science Foundation of Shandong Province [ZR2018MF034]
  3. National Natural Science Foundation of China [61801269]
  4. Key R & D project of Yantai (China) [2019XDHZ09]

向作者/读者索取更多资源

Tissue engineering applications demand 3D, non-invasive, and longitudinal assessment of bioprinted constructs. Current emphasis is on developing tissue constructs mimicking in vivo conditions; however, these are increasingly challenging to image as they are typically a few millimeters thick and turbid, limiting the usefulness of classical fluorescence microscopic techniques. For such applications, we developed a Mesoscopic Fluorescence Molecular Tomography methodology that collects high information content data to enable high-resolution tomographic reconstruction of fluorescence biomarkers at millimeters depths. This imaging approach is based on an inverse problem; hence, its imaging performances are dependent on critical technical considerations including optode sampling, forward model design and inverse solver parameters. Herein, we investigate the impact of the optical system configuration parameters, including detector layout, number of detectors, combination of detector and source numbers, and scanning mode with uncoupled or coupled source and detector array, on the 3D imaging performances. Our results establish that an MFMT system with a 2D detection chain implemented in a de-scanned mode provides the optimal imaging reconstruction performances. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据