4.8 Article

Understanding the Role of Metal and Molecular Structure on the Electrocatalytic Hydrogenation of Oxygenated Organic Compounds

期刊

ACS CATALYSIS
卷 9, 期 11, 页码 9964-9972

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.9b02921

关键词

electrocatalytic hydrogenation; H-2 evolution; theoretical thermodynamic descriptors; Sabatier principle

资金

  1. U.S. Department of Energy [DE-AC05-76RL01830]
  2. U.S. DOE by at Lawrence Livermore National Laboratory [DE-AC52-07NA27344]

向作者/读者索取更多资源

Electrocatalytic hydrogenation is increasingly studied as an alternative to integrate the use of recycled carbon feedstocks with renewable energy sources. However, the abundant empiric observations available have not been correlated with fundamental properties of substrates and catalysts. In this study, we investigated electrocatalytic hydrogenation of a homologues series of carboxylic acids, ketones, phenolics, and aldehydes on a variety of metals (Pd, Rh, Ru, Cu, Ni, Zn, and Co). We found that the rates of carbonyl reduction in aldehydes correlate with the corresponding binding energies between the aldehydes and the metals according to the Sabatier principle. That is, the highest rates are obtained at intermediate binding energies. The rates of H-2 evolution that occur in parallel to hydrogenation also correlate with the H-metal binding energies, following the same volcano-type behavior. Within the boundaries of this model (e.g., compounds reactive at room temperature and without important steric effects over the carbonyl group), the reported correlations help to explain the complex trends derived from the experimental observations, allowing for the correlation of rates with binding energies and the differentiation of mechanistic routes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据