4.8 Article

Ultrafast self-trapping of photoexcited carriers sets the upper limit on antimony trisulfide photovoltaic devices

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-12445-6

关键词

-

资金

  1. National Natural Science Foundation of China [21773208, U1732150, 11620101003]
  2. National Key Research and Development Program of China [2017YFA0207700, 2016YFA0200604, 2017YFA0204904]

向作者/读者索取更多资源

Antimony trisulfide (Sb2S3) is considered to be a promising photovoltaic material; however, the performance is yet to be satisfactory. Poor power conversion efficiency and large open circuit voltage loss have been usually ascribed to interface and bulk extrinsic defects By performing a spectroscopy study on Sb2S3 polycrystalline films and single crystal, we show commonly existed characteristics including redshifted photoluminescence with 0.6 eV Stokes shift, and a few picosecond carrier trapping without saturation at carrier density as high as approximately 10(20) cm(-3). These features, together with polarized trap emission from Sb2S3 single crystal, strongly suggest that photoexcited carriers in Sb2S3 are intrinsically self-trapped by lattice deformation, instead of by extrinsic defects. The proposed self-trapping explains spectroscopic results and rationalizes the large open circuit voltage loss and near-unity carrier collection efficiency in Sb2S3 thin film solar cells. Self-trapping sets the upper limit on maximum open circuit voltage (approximately 0.8 V) and thus power conversion efficiency (approximately 16 %) for Sb2S3 solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据