4.8 Article

Octahedral gold-silver nanoframes with rich crystalline defects for efficient methanol oxidation manifesting a CO-promoting effect

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41467-019-11766-w

关键词

-

资金

  1. Natural Science Foundation of China [21701118]
  2. Natural Science Foundation of Jiangsu Province [BK20161209, BK20160323]
  3. Natural Science Research Project of Jiangsu Higher Education Institutions [18KJA480004]
  4. Key Technology Initiative of Suzhou Municipal Science and Technology Bureau [SYG201748]
  5. Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions
  6. Soochow University-Western University Centre for Synchrotron Radiation Research

向作者/读者索取更多资源

Three-dimensional bimetallic nanoframes with high spatial diffusivity and surface heterogeneity possess remarkable catalytic activities owing to their highly exposed active surfaces and tunable electronic structure. Here we report a general one-pot strategy to prepare ultrathin octahedral Au3Ag nanoframes, with the formation mechanism explicitly elucidated through well-monitored temporal nanostructure evolution. Rich crystalline defects lead to lowered atomic coordination and varied electronic states of the metal atoms as evidenced by extensive structural characterizations. When used for electrocatalytic methanol oxidation, the Au3Ag nanoframes demonstrate superior performance with a high specific activity of 3.38 mA cm(-2), 3.9 times that of the commercial Pt/C. More intriguingly, the kinetics of methanol oxidation on the Au3Ag nanoframes is counter-intuitively promoted by carbon monoxide. The enhancement is ascribed to the altered reaction pathway and enhanced OH- co-adsorption on the defect-rich surfaces, which can be well understood from the d-band model and comprehensive density functional theory simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据