4.4 Article

Influence of demethylation on regulatory T and Th17 cells in myelodysplastic syndrome

期刊

ONCOLOGY LETTERS
卷 19, 期 1, 页码 442-448

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/ol.2019.11114

关键词

myelodysplastic syndrome; 5-azacytidine; regulatory T cells; T-helper 17 cells

类别

资金

  1. National Natural Science Foundation of China [81570190, 81529001]

向作者/读者索取更多资源

Myelodysplastic syndrome (MDS) represents a heterogeneous hematopoietic disorder in which mature blood cells are derived from an abnormal multipotent progenitor cell. The current therapy for MDS involves repeated cycles of DNA methyltransferase (DNMT) inhibitors, particularly the demethylation drug 5-azacytidine (5-azaC) which has been shown to increase the survival of patients with high-risk MDS. The mechanisms behind the therapeutic effects of 5-azaC are not yet clear. In this study the effect of 5-azaC on the development of regulatory T cells (Tregs) and T-helper 17 (Th17) cells was investigated. The numbers of CD4(+) T-cell subsets in 30 patients with intermediate-2/high-risk MDS were serially assessed at diagnosis and following 5-azaC treatment. The number of FoxP3(+) Tregs was significantly higher after 3 months of therapy. However, there was no statistical difference in the number of Th17 cells following treatment. In vitro, 5-azaC enhanced the overall proportion of Tregs, but not Th17, in CD4(+) T cells from patients with MDS. Addition of 5-azaC reduced the proliferative capacity of Tregs, suggesting that the increase in Tregs was due to conversion of conventional CD25(-) cells, rather than proliferation of CD25(+)FoxP3(+) cells. The FoxP3 expression in 5-azaC-treated T effectors was also increased. Interestingly, while Tbet and ROR gamma T mRNA transcription had no obvious changes, due to the demethylation of the FoxP3 promoter, these findings are important in associating the induction of DNA hypomethylation and the clinical response to 5-azaC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据