4.4 Article

Heterologous biosynthesis of triterpenoid dammarenediol-II in engineered Escherichia coli

期刊

BIOTECHNOLOGY LETTERS
卷 38, 期 4, 页码 603-609

出版社

SPRINGER
DOI: 10.1007/s10529-015-2032-9

关键词

Dammarenediol-II; Escherichia coli; NADPH-cytochrome P450 reductase; Squalene; Triterpenoid; 2, 3-oxidosqualene

资金

  1. National Basic Research Program of China [2012CB721105]
  2. Ministry of Science and Technology of China [2012AA02A701]

向作者/读者索取更多资源

To achieve heterologous biosynthesis of dammarenediol-II, which is the precursor of dammarane-type tetracyclic ginsenosides, by reconstituting the 2,3-oxidosqualene-derived triterpenoid biosynthetic pathway in Escherichia coli. By the strategy of synthetic biology, dammarenediol-II biosynthetic pathway was reconstituted in E. coli by co-expression of squalene synthase (SS), squalene epoxidase (SE), NADPH-cytochrome P450 reductase (CPR) from Saccharomyces cerevisiae, and SE from Methylococcus capsulatus (McSE), NADPH-cytochrome P450 reductase (CPR) from Arabidopsis thaliana. Sequences of transmembrane domains were truncated if necessary in each of the genes. Different sources of SE/CPR combinations were tested, during which two CPRs were detected to be new reductase partners of McSE. When the gene encoding dammarenediol-II synthase was co-expressed with the 2,3-oxidosqualene expression modules, dammarenediol-II was detected and the production was 8.63 mg l(-1) in E. coli under the shake-flask conditions. Two E. coli chassis for production of dammarenediol-II were established which could be potentially applied in other triterpenoid production in E. coli when different oxidosqualene cyclases (OSCs) introduced into the system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据