4.7 Article

Exploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae

期刊

BIOTECHNOLOGY FOR BIOFUELS
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-016-0570-6

关键词

Spathaspora species; Spathaspora passalidarum; Saccharomyces cerevisiae; Xylose fermentation; NADH-preferring xylose reductase; Bioethanol; XYL1.2

资金

  1. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES, PDEE) [4782-11-9]
  2. European Commission in the framework of EU-Brazil Project ProEthanol2G Integration of Biology and Engineering into an Economical and Energy-Efficient 2G Bioethanol Biorefinery [FP7-251151]
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) [551392/2010-0, 551245/2010-7, 560715/2010-2]
  4. Financiadora de Estudos e Projetos (FINEP) [2084/07]
  5. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)
  6. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP/BIOEN/FAPEMIG)

向作者/读者索取更多资源

Background: The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylose-fermenting Saccharomyces cerevisiae. Novel xylose-fermenting yeasts species, as those from the Spathaspora clade, have been described and are potential sources of novel genes to improve xylose fermentation in S. cerevisiae. Results: Xylose fermentation by six strains from different Spathaspora species isolated in Brazil, plus the Sp. passalidarum type strain (CBS 10155(T)), was characterized under two oxygen-limited conditions. The best xylose-fermenting strains belong to the Sp. passalidarum species, and their highest ethanol titers, yields, and productivities were correlated to higher XR activity with NADH than with NADPH. Among the different Spathaspora species, Sp. passalidarum appears to be the sole harboring two XYL1 genes: XYL1.1, similar to the XYL1 found in other Spathaspora and yeast species and XYL1.2, with relatively higher expression level. XYL1.1p and XYL1.2p from Sp. passalidarum were expressed in S. cerevisiae TMB 3044 and XYL1.1p was confirmed to be strictly NADPH-dependent, while XYL1.2p to use both NADPH and NADH, with higher activity with the later. Recombinant S. cerevisiae strains expressing XYL1.1p did not show anaerobic growth in xylose medium. Under anaerobic xylose fermentation, S. cerevisiae TMB 3504, which expresses XYL1.2p from Sp. passalidarum, revealed significant higher ethanol yield and productivity than S. cerevisiae TMB 3422, which harbors XYL1p N272D from Sc. stipitis in the same isogenic background (0.40 vs 0.34 g g(CDW)(-1) and 0.33 vs 0.18 g g(CDW)(-1) h(-1), respectively). Conclusion: This work explored a new clade of xylose-fermenting yeasts (Spathaspora species) towards the engineering of S. cerevisiae for improved xylose fermentation. The new S. cerevisiae TMB 3504 displays higher XR activity with NADH than with NADPH, with consequent improved ethanol yield and productivity and low xylitol production. This meaningful advance in anaerobic xylose fermentation by recombinant S. cerevisiae (using the XR/XDH pathway) paves the way for the development of novel industrial pentose-fermenting strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据