4.5 Review

A mini review of xylanolytic enzymes with regards to their synergistic interactions during hetero-xylan degradation

期刊

出版社

SPRINGER
DOI: 10.1007/s11274-019-2765-z

关键词

Carbohydrate esterases; Degradation; Glycoside hydrolases; Lytic polysaccharide monooxygenase; Synergy; Xylan

资金

  1. National Research Foundation (NRF)
  2. Council for Scientific and Industrial Research (CSIR) in South Africa

向作者/读者索取更多资源

This review examines the recent models describing the mode of action of various xylanolytic enzymes and how these enzymes can be applied (sequentially or simultaneously) with their distinctive roles in mind to achieve efficient xylan degradation. With respect to homeosynergy, synergism appears to be as a result of beta-xylanase and/or oligosaccharide reducing-end beta-xylanase liberating xylo-oligomers (XOS) that are preferred substrates of the processive beta-xylosidase. With regards to hetero-synergism, two cross relationships appear to exist and seem to be the reason for synergism between the enzymes during xylan degradation. These cross relations are the debranching enzymes such as alpha-glucuronidase or side-chain cleaving enzymes such as carbohydrate esterases (CE) removing decorations that would have hindered back-bone-cleaving enzymes, while backbone-cleaving-enzymes liberate XOS that are preferred substrates of the debranching and side-chain-cleaving enzymes. This interaction is demonstrated by high yields in co-production of xylan substituents such as arabinose, glucuronic acid and ferulic acid, and XOS. Finally, lytic polysaccharide monooxygenases (LPMO) have also been implicated in boosting whole lignocellulosic biomass or insoluble xylan degradation by glycoside hydrolases (GH) by possibly disrupting entangled xylan residues. Since it has been observed that the same enzyme (same Enzyme Commission, EC, classification) from different GH or CE and/or AA families can display different synergistic interactions with other enzymes due to different substrate specificities and properties, in this review, we propose an approach of enzyme selection (and mode of application thereof) during xylan degradation, as this can improve the economic viability of the degradation of xylan for producing precursors of value added products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据