4.7 Article

A Parametric Numerical Analysis of Factors Controlling Ground Ruptures Caused by Groundwater Pumping

期刊

WATER RESOURCES RESEARCH
卷 55, 期 11, 页码 9500-9518

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2019WR025034

关键词

ground ruptures; Earth fissures; aquifer overexploitation; numerical modeling; finite elements; discontinuum mechanics

资金

  1. Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources, Geological Survey of Jiangsu Province (China) [20170301]
  2. National Natural Science Foundation of China [41877180]

向作者/读者索取更多资源

A modeling analysis is used to investigate the relative susceptibility of various hydrogeologic configurations to aseismic rupture generation due to deformation of aquifer systems accompanying groundwater pumping. An advanced numerical model (GEPS3D) is used to simulate rupture generation and propagation for three typical processes: (i) reactivation of a preexisting fault, (ii) differential compaction due to variations in thickness of aquifer/aquitard layers constituting the aquifer system, and (iii) tensile fracturing above a bedrock ridge that forms the base of the aquifer system. A sensitivity analysis is developed to address the relative importance of various factors, including aquifer depletion, aquifer thickness, the possible uneven distribution and depth below land surface of the aquifer/aquitard layers susceptible to aquifer-system compaction, and the height of bedrock ridges beneath the aquifer system which contributes to thinning of the aquifer system. The rupture evolution is classified in two occurrences. In one, the rupture develops at either the top of the aquifer or at land surface and does not propagate. In the other, the developed rupture propagates from the aquifer top toward the land surface and/or from the land surface downward. The aquifer depth is the most important factor controlling rupture evolution. Specifically, the probability of a significant rupture propagation is higher when the aquifer top is near land surface. The numerical results are processed by a statistical regression analysis to provide a general methodology for a preliminary evaluation of possible ruptures development in exploited aquifer systems susceptible to compaction and accompanying land subsidence. A comparison with a few representative case studies in Arizona, USA, China, and Mexico supports the study outcomes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据