4.8 Article

Temperature-dependent redox zonation, nitrate removal and attenuation of organic micropollutants during bank filtration

期刊

WATER RESEARCH
卷 162, 期 -, 页码 225-235

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.06.041

关键词

Pharmaceuticals; In-situ degradation rates; Denitrification; River-groundwater-interaction; Urban water cycle

资金

  1. Federal Waterways Engineering and Research Institute (BAW) in Karlsruhe, Germany

向作者/读者索取更多资源

River bank filtration (RBF) is considered to efficiently remove nitrate and trace organic micropollutants (OMP) from polluted surface waters. This is essential for maintaining good groundwater quality and providing high quality drinking water. Predicting the fate of OMP during RBF is difficult as the biogeochemical factors controlling the removal efficiency are not fully understood. To determine in-situ removal efficiency and degradation rates of nitrate and OMP indicator substances we conducted a field study in a RBF system during a period of one and a half years incorporating temporally and spatially varying redox conditions and temperature changes typically occurring in temperate climates. RBF was analyzed by means of mixing ratios between infiltrated river water and groundwater as well as average residence times of surface water towards the individual groundwater observation wells. These results were used to calculate temperature dependent first order degradation rates of redox sensitive species and several OMP. Five out of ten investigated OMP were completely removed along RBF pathways. We demonstrate that degradation rates of several OMP during bank filtration were controlled by redox conditions and temperature whereby temperature itself also had a significant influence on the extent of the most reactive oxic zone. The seasonal variations in temperature alone could explain a considerable percentage of the variance in dissolved oxygen (34%), nitrate (81%) as well as the OMPs diclofenac (44%) and sulfamethoxazole (76%). Estimated in-situ degradation rates roughly varied within one order of magnitude for temperature changes between 5 degrees C and 20 degrees C. This study highlights that temporal variability in temperature and redox zonation is a significant factor for migration and degradation of nitrate and several OMPs. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据