4.8 Article

The implications of Simpson's paradox for cross-scale inference among lakes

期刊

WATER RESEARCH
卷 163, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.114855

关键词

NLA; LAGOSSE; Multilevel/hierarchical model; Chlorophyll a

资金

  1. Great Lakes Environmental Research Laboratory of the US National Oceanic and Atmospheric Administration (NOAA-GLERL) [1918]

向作者/读者索取更多资源

Using cross-sectional data for making ecological inference started as a practical means of pooling data to enable meaningful empirical model development. For example, limnologists routinely use sample averages from numerous individual lakes to examine patterns across lakes. The basic assumption behind the use of cross-lake data is often that responses within and across lakes are identical. As data from multiple study units across a wide spatiotemporal scale are increasingly accessible for researchers, an assessment of this assumption is now feasible. In this study, we demonstrate that this assumption is usually unjustified, due largely to a statistical phenomenon known as the Simpson's paradox. Through comparisons of a commonly used empirical model of the effect of nutrients on algal growth developed using several data sets, we discuss the cognitive importance of distinguishing factors affecting lake eutrophication operating at different spatial and temporal scales. Our study proposes the use of the Bayesian hierarchical modeling approach to properly structure the data analysis when data from multiple lakes are employed. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据