4.8 Article

Relevance of N-nitrosation reactions for secondary amines in nitrate-rich wastewater under UV-C treatment

期刊

WATER RESEARCH
卷 162, 期 -, 页码 22-29

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2019.06.055

关键词

Secondary amine; UV-C phototransformation; Nitrate; Genotoxicity; Transformation pathway

资金

  1. Water and Agriculture, Food Security and Climate change Joint Programming Initiatives (JPIs) through the research project AWARE Assessing the fate of pesticides and waterborne contaminants in agricultural crops and their environmental risks

向作者/读者索取更多资源

This study investigated the transformation of secondary amine pharmaceuticals in UV-C/NO3- and in nitrate-rich wastewater at 254 nm by taking diclofenac, diphenylamine, mefenamic acid and furosemide as probe compounds. The degradation of targeted compounds were positively related to nitrate concentration and mainly caused by the formation of peroxynitrite and related reactive nitrogen species (e.g., nitrogen oxide and nitrogen dioxide radicals). Major transformation products were identified to provide fundamental understanding of the selective oxidation of secondary amine with reactive nitrogen species. UV photolysis, hydroxyl radical oxidation, nitration and nitrosation processes were found to be the most significant transformation pathways. In case of diphenylamine, for which most of the identified intermediates were available as standard, the relative significance of each transformation route could be established, highlighting for the first time the important role of N-nitrosation processes in UV/NO3- treatment followed by the decomposition of the resulting N-nitroso compounds by an alpha hydroxylation mechanism. This specific transformation pathway was of concern because it constitutes the molecular basis of N-nitrosamine carcinogenicity and may contribute to the increase in effluent genotoxicity under UV-C treatment in addition to the formation of nitrophenols. Hydrogenocarbonate ions at concentration values higher than 300 mg/L appeared to be a protective specie against nitrosation processes due to the formation of carbamate adducts but H2O2 in UV-C/H2O2 could be responsible for an exacerbation of the N-nitrosation pathway due to an addition source of hydroxyl radical in the system. The occurrence of major transformation products of diclofenac was confirmed in nitrate-rich wastewater under UV-C treatment at pilot-scale operation. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据