4.7 Article

Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae

期刊

Biotechnology for Biofuels
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13068-016-0556-4

关键词

Dunaliella salina; beta-carotene; Dynamic flux balance analysis; Model-based process design

向作者/读者索取更多资源

Background: Photosynthetic organisms can be used for renewable and sustainable production of fuels and high-value compounds from natural resources. Costs for design and operation of large-scale algae cultivation systems can be reduced if data from laboratory scale cultivations are combined with detailed mathematical models to evaluate and optimize the process. Results: In this work we present a flexible modeling formulation for accumulation of high-value storage molecules in microalgae that provides quantitative predictions under various light and nutrient conditions. The modeling approach is based on dynamic flux balance analysis (DFBA) and includes regulatory models to predict the accumulation of pigment molecules. The accuracy of the model predictions is validated through independent experimental data followed by a subsequent model-based fed-batch optimization. In our experimentally validated fed-batch optimization study we increase biomass and beta-carotene density by factors of about 2.5 and 2.1, respectively. Conclusions: The analysis shows that a model-based approach can be used to develop and significantly improve biotechnological processes for biofuels and pigments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据