4.7 Article

D Ultrasonically aided selective stabilization of pyrrolic type nitrogen by one pot nitrogen doped and hydrothermally reduced Graphene oxide/Titania nanocomposite (N-TiO2/N-RGO) for H2 production

期刊

ULTRASONICS SONOCHEMISTRY
卷 57, 期 -, 页码 62-72

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultsonch.2019.04.041

关键词

Ultrasonication; Pyrrolic nitrogen; Nitrogen doped reduced graphene oxide; Nitrogen doped titania; One pot hydrothermal reduction; Hydrogen evolution

资金

  1. Department of Science and Technology, Science and Engineering Research Board (DST-SERB), India [EMR/2015/001406]

向作者/读者索取更多资源

Herein, we report the simultaneous doping of nitrogen on TiO2 and reduced graphene oxide (N-TiO2/N-RGO) with exclusive stabilization of pyrrolic type nitrogen on RGO network by ultrasonic conditions followed by hydrothermal method for efficient photocatalytic H-2 production. Interestingly, during synthesis of N-TiO2/N-RGO composite, pyrrolic type nitrogen in RGO has been exclusively stabilized as confirmed by XPS analysis. The exclusive stabilization of pyrrolic nitrogen changed the optical and electronic properties of N-TiO2/N-RGO nanocomposites by giving two pi-electrons to the system for extended conjugation, which enhanced the optical absorption and charge carrier separation efficiency as confirmed by UV-Vis DRS and PL studies. Notably, N-TiO2/N-RGO nanocomposite demonstrated. This enhanced photocatalytic activity can be ascribed to synergetic action of N-TiO2 and N-RGO in optical and photogenerated charge carrier separation. Moreover, the plausible mechanism for exclusive stabilization of pyrrolic type nitrogen and enhanced photocatalytic activity were also proposed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据