4.5 Article

Estimation of extreme quantiles at ungaged sites based on region-of-influence and weighting approaches to regional frequency analysis of maximum 24-h rainfall

期刊

THEORETICAL AND APPLIED CLIMATOLOGY
卷 139, 期 3-4, 页码 1191-1205

出版社

SPRINGER WIEN
DOI: 10.1007/s00704-019-03022-4

关键词

Regionalization; Extreme quantiles; Ungaged sites; Regression relationship; Weighting procedure; Lake Urmia basin

向作者/读者索取更多资源

Lack of adequate and reliable data for estimating the extreme values of hydrological variables at ungaged sites has always been one of the issues facing hydrologists in designing and planning water resource projects. Regionalizing the considered hydrological variable, finding an acceptable relationship for estimating its extreme values at ungaged sites using given data of other stations, and applying their available attributes are the solutions for the mentioned issue. In this study, historical data of maximum 24-h rainfall (M24-hR) covering the statistical period of 30 years (1979-2008) were collected and used from 63 rainfall gaging stations situated at Lake Urmia basin, northwestern Iran. Afterwards, using the method of region-of-influence (ROI) regionalization, the study area was regionalized through the geographic attributes of the stations (including latitude, longitude, elevation above mean sea level, and distance to the center of Lake Urmia). Then, all possible situations were considered for providing an appropriate regression relationship to estimate the extreme quantiles of M24-hR at ungaged sites by defining various scenarios of weighting to the geographic attributes and rainfall quantiles. The results showed that among different defined weighting scenarios, weighting to both stations and attributes in the at-site situation had an effective impact on forming an appropriate regression relationship for the estimation of extreme quantiles at ungaged sites. However, in the regional situation, a scenario considering no weight for both stations and attributes resulted in the most acceptable estimation of the quantiles with the lowest error (MSE = 1.29 mm). Further, the study showed that in most scenarios, the extreme quantiles estimated by means of regional regression relationships at ungaged sites (MSE = 1.29~1.75 mm) resulted in lower errors than the at-site ones (MSE = 1.35~7.64 mm).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据