4.7 Article Proceedings Paper

Faradaic and/or capacitive: Which contribution for electrochromism in NiO thin films cycled in various electrolytes?

期刊

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2019.110114

关键词

Electrochromism; Nickel oxide; Mechanism; Capacitive; Device

资金

  1. University of Bordeaux
  2. LabEx AMADEus of the IdEx Bordeaux, Investissements d'Avenir programme of the French government [ANR-10-LABX-42, ANR-10-IDEX-03-02]

向作者/读者索取更多资源

This study compares the electrochromic performance of NiO thin films deposited by RF magnetron sputtering cycled in lithium, sodium and small cations free based electrolytes, namely 1:9 LiTFSI in EMITFSI, 1:9 NaTFSI in EMITFSI and EMITFSI respectively. Regardless of the electrolyte nature, NiO thin films show similar electrochromic properties associated with an optical switch from colorless to brownish upon oxidation correlated to a modulation of transmittance close to 40 % associated with a good electrochemical stability. Interestingly, depending on the electrolyte nature, the EC behavior is correlated with various CV shapes raising the question of the mechanism involved. In particular, the reversible coloration mechanism cannot be only described by a single insertion/extraction of lithium ions, as observed for tungsten oxide in lithium media. The rectangular shape of the CV curves of NiO thin films in neat electrolyte and the behavior of NiO with various scan rates suggest that the EC properties result from a combination of both faradaic and capacitive contributions, with redox reactions largely occurring at the surface. Integration of NiO thin films in a full device is illustrated in double sided PANI/white electrolyte-EMITFSI/NiO EC devices showing simultaneous progressive color changes from blue to green and white to brown, on PANI and NiO sides, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据