4.7 Article

Microwave-assisted Fe-doped ZnO nanoparticles for enhancement of silicon solar cell efficiency

期刊

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2019.110073

关键词

ZnO nanoparticles; Iron doping; Microwave method; External quantum efficiency; Efficiency enhancement

资金

  1. NASA EPSCoR [14-2-1205324]

向作者/读者索取更多资源

We have investigated the performance of a silicon solar cell coated with ZnO nanoparticle layers doped with iron varying from (0-20%). We synthesized nanoparticles using a microwave method and fabricated thin film layers on silicon solar cells through a spin coating technique. The structure and morphology of nanoparticles were analyzed through transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). The size of the particles decreased as iron concentration increased from 0 to 15%. Optical properties were analyzed through photoluminescence (PL) and absorption spectroscopy. PL spectra show a blueshift in the near band edge emission peaks for 0-15% doped samples and a redshift for the 20% doped sample. The band gap of Fe-ZnO nanoparticles (0-15%) was found to increase from 3.20 eV to 3.24 eV, and the bandgap decreased to 3.22 eV for 20% Fe-ZnO nanoparticles. Current-Voltage measurements confirm the enhancement in power conversion efficiency by 30% with iron doping in ZnO up to 15%. Efficiency increased with nanoparticle layers up to 180.29 nm in every sample and decreased with further increase in thickness. Enhancement in external quantum efficiency (EQE) was also observed with the increase in dopant concentration up to 15%. The optimum thickness of the ZnO nanoparticle layer was found to be approximately 180 nm for maximum enhancement in conversion efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据