4.8 Article

Metal-Layer Assisted Growth of Ultralong Quasi-2D MOF Nanoarrays on Arbitrary Substrates for Accelerated Oxygen Evolution

期刊

SMALL
卷 15, 期 51, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/smll.201906086

关键词

electrocatalysts; interface engineering; metal-organic frameworks; nanoarrays; oxygen evolution reaction

资金

  1. NSFC [51873088]
  2. Tianjin Municipal Science and Technology Commission [18JCZDJC38400]
  3. 111 Project [B18030]

向作者/读者索取更多资源

Controlled growth of metal-organic frameworks (MOFs) nanocrystals on requisite surfaces is highly desired for myriad applications related to catalysis, energy, and electronics. Here, this challenge is addressed by overlaying arbitrary surfaces with a thermally evaporated metal layer to enable the well-aligned growth of ultralong quasi-2D MOF nanoarrays comprising cobalt ions and thiophenedicarboxylate acids. This interfacial engineering approach allows preferred chelation of carboxyl groups in the ligands with the metal interlayers, thereby making possible the fabrication and patterning of MOF nanoarrays on substrates of any materials or morphologies. The MOF nanoarrays grown on porous metal scaffolds demonstrate high electrocatalytic capability for water oxidation, exhibiting a small overpotential of 270 mV at 10 mA cm(-2), or 317 mV at 50 mA cm(-2) as well as negligible decay of performance within 30 h. The enhanced performance stems from the improved electron and ion transport in the hierarchical porous nanoarrays consisting of in situ formed oxyhydroxide nanosheets in the electrochemical processes. This approach for mediating the growth of MOF nanoarrays can serve as a promising platform for diverse applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据