4.8 Article

A microarray platform for detecting disease-specific circulating miRNA in human serum

期刊

BIOSENSORS & BIOELECTRONICS
卷 75, 期 -, 页码 238-246

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2015.08.039

关键词

Biosensor; Circulating microRNA; Microarray; Hairpin probes; DIC microscopy; Gold nanoparticles

资金

  1. Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore)

向作者/读者索取更多资源

Circulating microRNAs (miRNAs) are emerging as potential blood-based biomarkers for cancer and other critical diseases. To profile the expression levels of these tiny molecules, especially in a point-of-care setting, it is imperative to quantify them directly in complex biological fluids. Herein, we report the development of a microarray platform with carboxyl-polyethylene glycol (PEG) as a functional layer and aminated hairpin nucleic acid molecules as target-specific capture probes (CPs). Due to the anti-fouling effect conferred by the carboxyl-PEG layer, we could directly detect as little as 10 fM of miRNA targets in 20 mu l of unprocessed human serum. In contrast to the conventional miRNA microarrays, our platform does not require RNA extraction, labeling and target amplification, thus significantly reducing both the sample preparation steps as well as the total assay duration. The use of specially designed hairpin CPs entails reliable discrimination of miRNA sequences with high sequence homology. A nanoparticle-based detection technique, with the help of differential interference contrast (DIC) microscopy, offers excellent resolution down to a single molecule. With the capability of detecting disease-specific miRNA targets directly in human serum, our microarray platform has potential applications in rapid, minimally invasive clinical diagnostic assays. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据