4.7 Article

Effects of biomass and environmental factors on nitrogen removal performance and community structure of an anammox immobilized filler

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 710, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135258

关键词

Anaerobic ammonia oxidation (anammox); Polyvinyl alcohol-polypropylene (PVA-PP); Immobilized filler; Nitrogen removal; Microbial community structure

资金

  1. Beijing Municipal Commission of Education under the municipal government of Beijing under the Program Research on reinforcement and stability of nitrogen removal performance in wastewater treatment based on the new landmark conditions [Z161100004516015]

向作者/读者索取更多资源

In order to reduce the loss of anaerobic ammonia oxidation (anammox) sludge and stabilize the reaction microenvironment, polyvinyl alcohol - polypropylene (PVA-PP) was used to encapsulate anammox bacteria on a filler. The influence of different inoculation amounts (2, 4, 6 and 8%) on the overall nitrogen removal process was first compared and then the anammox characteristics of the immobilized filler under the influence of different environmental factors were evaluated through batch experiments. The results show that the biomass only affected the growth rate of the activity during the logarithmic phase, while the total nitrogen removal rate (NRR) tended to be similar after 99 d of culture. The NRR reached 1.83 kg.(m(3).d)(-1) on day 140, which was 9.4 times that of suspended sludge before encapsulation, and the structure of embedding filler was complete without shedding. Scanning electron microscopy (SEM) showed that the internal porous network structure formed channels and a large number of anammox bacteria were observed around. Microbial community analysis of the 16S rDNA gene showed that the diversity was maintained in the entrapped carrier. Furthermore, the effective enrichment of the anammox functional bacteria Candidatus Kuenenia (AF375995.1) increarsed from 11.06% to 32.55%. The PVA-PP immobilized filler fit well with the biological nitrogen removal kinetic model and could also achieve coupling of anammox and denitrification. The inhibition effect of the organic carbon source interference and starvation on anammox bacteria was significantly weakened. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据