4.7 Article

Impact of application mode on the control of phosphorus release from sediments using zirconium-modified bentonite as geo-engineering material

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 712, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135633

关键词

Sediment; Zirconium-modified bentonite; Phosphorus; Addition; Capping; Regulation

资金

  1. Shandong Key Scientific and Technical Innovation Project [2018YFJH0902]
  2. Shanghai Natural Science Foundation [15ZR1420700]
  3. National Science Foundation of China [50908142, 51408354]
  4. Scientific Research Project of Shanghai Science and Technology Committee [10230502900]

向作者/读者索取更多资源

In this study, the influence of zirconium-modified bentonite (ZMBT) addition, capping, and addition/capping on the transport and transformation of phosphorus (P) in sediments were comparatively investigated using incubation experiments to determine the effect of ZMBT application mode on the controlling efficiency. Results showed that the release of soluble reactive P (SRP) from sediment to the overlying water was effectively intercepted by all the ZMBT treatments. The inactivation of pore-water SRP, diffusive gradients in thin films-labile P (DGT-LP) and mobile P (Mob-IP) in sediment played a pivotal role in the regulation of SRP liberation from the sediment to the overlying water by ZMBT. An application mode change from capping and addition/capping to addition resulted in a decline of the reduction efficiency of overlying water SRP by the ZMBT treatment to some extent. The variation in the reduction efficiency of pore-water SRP and DGT-LP in the uppermost sediment were responsible for the change of the reduction efficiency of overlying water SRP by the ZMBT treatment. A change in application mode from capping to addition/capping and addition caused an obvious increase in the immobilization efficiency of pore-water SRP, DGT-LP and Mob-IP in the lower sediment by the ZMBT treatment. Results of this work indicate that, when the ZMBT capping layer on the top of sediment was completely mixed with the sediment, although the stability of P in the lower sediment obviously increases, the controlling efficiency of SRP liberating from the sediment to the overlying water decreases to some extent. Thus, the repeated addition of ZMBT to form a covering layer on the ZMBT-amended sediment is very necessary for the effective control of sediment-P release to the overlying water. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据