4.7 Article

Relationship between tillage management and DMPSA nitrification inhibitor efficiency

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 718, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134748

关键词

Agriculture; Ploughing; Ammonium sulphate; Nitrification inhibitors; Greenhouse gases; N-cycling genes

资金

  1. Spanish Government (MINECO/FEDER) [AGL2015-64582-C3-2-R]
  2. Spanish Government (MCIU/AEI/FEDER, UE) [RTI2018-094623-B-C21]
  3. Basque Government [IT-932-16]
  4. EuroChem Agro Iberia S.L.-UPV/EHU [2017.0016]
  5. Ministry of Economy and Business of the Spanish Government
  6. UPV/EHU

向作者/读者索取更多资源

Agricultural sustainability is compromised by nitrogen (N) losses caused by soil microbial activity. Nitrous oxide (N2O) is a potent greenhouse gas (GHG) produced as consequence of nitrification and denitrification processes in soils. Nitrification inhibitors (NI) as 3,4-dimethylpyrazole-succinic acid (DMPSA) are useful tools to reduce these N losses from fertilization. The objective of this work was to test the efficiency of DMPSA in two different tillage management systems, conventional tillage (CT) and no-tillage (NT), in a winter wheat crop under Humid Mediterranean conditions. N fertilizer was applied as ammonium sulphate (AS) with or without DMPSA in a single or split application, including an unfertilized treatment. GHG fluxes N2O, CO2 and CH4) were measured by the closed chamber method. amoA and nosZl genes were quantified by qPCR as indicators of nitrifying and denitrifying populations. Nitrification was inhibited by DMPSA in both CT and NT, while the higher water filled pore space (WFPS) in NT promoted a better efficiency of DMPSA in this system. This higher efficiency might be due to a greater N2O reduction to N-2 as result of the nosZl gene induction. Consequently, DMPSA was able to reduce N2O emissions down to the unfertilized levels in NT. Provided that NT reduced CO2 emissions and maintained crop yield compared to CT, the application DMPSA under NT management is a promising strategy to increase agro-systems sustainability under Humid Mediterranean conditions. (C) 2019 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据