4.7 Article

Environmental baseline monitoring for shale gas development in the UK: Identification and geochemical characterisation of local source emissions of methane to atmosphere

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 708, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.134600

关键词

Mobile measurement; Baseline surveys; Methane; Carbon isotopes; Ethane

资金

  1. UK Government Department for Business, Energy and Industrial Strategy (BEIS) [GA/18F/017/NEE6617R]
  2. NERC
  3. NERC [NE/N015835/1, NE/N015584/1, NE/R017638/1, NE/R01809X/1, bgs06003, bas0100032, NE/R017360/1] Funding Source: UKRI
  4. Natural Environment Research Council [NE/R01809X/1] Funding Source: researchfish

向作者/读者索取更多资源

Baseline mobile surveys of methane sources using vehicle-mounted instruments have been performed in the Fylde and Ryedale regions of Northern England over the 2016-19 period around proposed unconventional (shale) gas extraction sites. The aim was to identify and characterise methane sources ahead of hydraulically fractured shale gas extraction in the area around drilling sites. This allows a potential additional source of emissions to atmosphere to be readily distinguished from adjacent sources, should gas production take place. The surveys have used ethane:methane (C2:C1) ratios to separate combustion, thermogenic gas and biogenic sources. Sample collection of source plumes followed by high precision delta C-13 analysis of methane, to separate and isotopically characterise sources, adds additional biogenic source distinction between active and closed landfills, and ruminant eructations from manure. The surveys show that both drill sites and adjacent fixed monitoring sites have cow barns and gas network pipeline leaks as sources of methane within a 1 km range. These two sources are readily separated by isotopes (delta C-13 of -67 to -58 parts per thousand, for barns, compared to -43 to -39 parts per thousand, for gas leaks), and ethane: methane ratios (<0.001 for barns, compared to >0.05 for gas leaks). Under a well-mixed daytime atmospheric boundary layer these sources are generally detectable as above baseline elevations up to 100 m downwind for gas leaks and up to 500 m downwind for populated cow barns. It is considered that careful analysis of these proxies for unconventional production gas, if and when available, will allow any fugitive emissions from operations to be distinguished from surrounding sources. (C) 2019 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据