4.7 Review

Health effects from freshly emitted versus oxidatively or photochemically aged air pollutants

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 704, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.135772

关键词

Air pollution; Mixtures; Photochemistry; Toxicology; Health effects; Comparison

向作者/读者索取更多资源

Epidemiology studies over the past five decades have provided convincing evidence that exposure to air pollution is associated with multiple adverse health outcomes, including increased mortality. Air pollution is a complex mixture of particles, vapors and gases emitted from natural and anthropogenic sources as well as formed through photochemical transformation processes. In metropolitan areas, air pollutants from combustion emissions feature a blend of emitted particles, oxides of carbon, sulfur and nitrogen, volatile organic compounds, and secondary reaction products, such as ozone, nitrogen dioxide, and secondary organic aerosols. Because many of the primary and transformed pollutants track together, their relative contributions to health outcomes arc difficult to disentangle. Aside from the criteria pollutants ozone and nitrogen dioxide and some of the simpler aldehydes (e.g. formaldehyde and acrolein), other products from photochemical processes are a particularly vexing class of chemicals to investigate since they comprise a dynamic ill-defined complex mixture in both particulate and gas phases. The purpose of this review was to describe and compare health effects of freshly emitted versus oxidatively or photochemically aged air pollutants. In some cases, (e.g. single volatile organic compounds) photochemical transformation resulted in marked enhancements in toxicity through formation of both known and unidentified reaction products, while in other examples (e.g. aging of automobile emissions) the potentiation of effect was variable. The variation in experimental design, aging system employed, concentration and type of starting agent, and toxicity endpoints make comparisons between different studies exceedingly difficult. A more systematic approach with a greater emphasis on higher throughput screening and computational toxicology is needed to fully answer under what conditions oxidatively- or photochemically-transformed pollutants elicit greater health effects than primary emissions. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据