4.8 Article

Covalent linking DNA to graphene oxide and its comparison with physisorbed probes for Hg2+ detection

期刊

BIOSENSORS & BIOELECTRONICS
卷 79, 期 -, 页码 244-250

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2015.12.043

关键词

Graphene; DNA; Mercury; Biosensors; Fluorescence; Covalent

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [386326]
  2. Doctoral Fund for Priority Development Project from the Ministry of Education of China [20120101130009]

向作者/读者索取更多资源

Graphene oxide (GO) has attracted extensive research interest as a platform for DNA adsorption and biosensor development. While most researchers use simple physisorption of fluorescently labeled DNA, covalent sensors are less susceptible to non-specific probe displacement and minimize false positive results. In this work, three thymine-rich DNA probes of different lengths are modified on their 3'-end with an amino group for covalent conjugation to GO. They also each contain an internally labeled fluorophore so that Hg2+ binding can lead to a large distance increase between the fluorophore and the GO surface for fluorescence signaling. Hg2+-dependent fluorescence signaling from the covalent sensors are compared with that from the non-covalent sensors in terms of sensitivity, selectivity, signaling kinetics, and continuous monitoring. The covalent sensors are much more stable and resistant to nonspecific probe displacement, while still retaining high sensitivity and similar selectivity. The detection limits are 16.3 and 20.6 nM Hg2+, respectively, for the covalent and non-covalent sensors, and detection of spiked Hg2+ in Lake Ontario water is demonstrated. (C) 2015 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据