4.7 Article

Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake, China, and their paleoclimatic implications

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 692, 期 -, 页码 917-929

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.07.099

关键词

Qinghai Lake Basin; Geochemistry; Holocene; Aeolian deposits; Paleodimate

资金

  1. National Natural Science Foundation of China [41571184]
  2. National Key Research and Development Program on monitoring, early warning and prevention of major natural disasters [2017YFC1502401]
  3. National Social Science Fund of China [17BKG031]

向作者/读者索取更多资源

The paleoclimate evolution of the northeastern Tibetan Plateau (TP), especially in the Qinghai Lake Basin (QLB), has long been a subject of interest to scholars due to the particularity of the geographical location. However, because of the uncertainties of the chronologies and the interpretations of the proxies used, climate change in this region remains controversial during the Holocene. The Hudong dunefield is located to the east of Qinghai Lake and is the largest sand accumulation area in the QLB. In this study, deposits in the Holocene aeolian sandpaleosol sequences Chengou East (CGE) and Qinghaihu Country (QHH) in the Hudong dunefield were analyzed to determine their elemental geochemical characteristics and paleoclimatic implications. Combining the grain size, total organic carbon (TOC) and redness, we investigate the paleoclimate changes in this region and its response to the East Asian Summer Monsoon (EASM) during the Holocene. The high Na2O/Al2O3 ratios and low chemical index of alteration (CIA) values suggest that most of the sediments are unweathered to weakly weathered, although some mid-Holocene samples are moderately weathered. The multiproxy analysis indicates that the local climate was broadly coincident with that of the northeastern TP and most regions of northern China, implying that the paleodimate of the QLB was closely related with the evolution of the EASM during the Holocene. Additionally, after the 9.2 ka BP cold event, the chemical weathering increased gradually. The higher CIA and TOC contents and lower redness and mean grain size from 8.7 to 4.0 ka BP are possibly associated with the mid-Holocene optimum period and indicate intensified chemical weathering, denser vegetation cover and weakened aeolian activity in the QLB in response to a warmer and more humid climate. After 4.0 ka BP, the lower degrees of chemical weathering indicate that the study area was dominated by a relatively cold and thy climate, and several alternating warm-wet and cold-dry intervals occurred from 3.1 to 0.6 ka BP. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据