4.7 Article

Effective removal by coagulation of contaminants in concentrated leachate from municipal solid waste incineration power plants

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 685, 期 -, 页码 392-400

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2019.05.392

关键词

Concentrated leachate; Coagulation; Optimal treatment condition; Removal efficiency; Characteristics of DOM

资金

  1. Doctoral Innovation Fund Program of Southwest Jiaotong University [D-CX201839]

向作者/读者索取更多资源

Municipal solid waste (MSW) incineration is widely used in China. Concentrated leachate, containing high concentrations of pollutants, is an important type of secondary pollution produced in MSW incineration power plants and requires proper treatment. In this study, various coagulants were used to treat concentrated leachate from a nanofiltration (NF) membrane that treated leachate from an MSW incineration plant. The optimal coagulation condition was determined in this study. Under the optimal condition, removals of chemical oxygen demand, light absorbing substances (at 254 nm), total nitrogen, color and turbidity were 68.42%, 69.01%, 44.14%, 92.31% and 87.44%, respectively. Much of the refractory organic matter with relatively high molecular weight, aromaticity and humification degree was removed, and effluent had a lower molecular weight than raw NF concentrated leachate. Study also found that some parts of high molecular weight compounds from NF CL were removed by coagulation process, but the change of distribution of molecular weight was not outstanding. The NF concentrated leachate, both before and after coagulation, contained a large amount of chloride. Hence, a follow-up study should be conducted to find an effective additional processing that can remove organic matter using the high concentration of chloride in the NF concentrated leachate coagulation effluent. This study provides a theoretical basis for the treatment of concentrated leachate from MSW incineration power plants. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据