4.3 Article

Structure based designing of benzimidazole/benzoxazole derivatives as anti-leishmanial agents

期刊

SAR AND QSAR IN ENVIRONMENTAL RESEARCH
卷 30, 期 12, 页码 919-933

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/1062936X.2019.1684357

关键词

Leishmaniasis; homology modelling; pharmacophore; MTT assay; dihydrofolate reductase-thymidylate synthase; pteridine reductase 1

向作者/读者索取更多资源

Folates are essential biomolecules required to carry out many crucial processes in leishmania parasite. Dihydrofolate reductase-thymidylate synthase (DHFR-TS) and pteridine reductase 1 (PTR1) involved in folate biosynthesis in leishmania have been established as suitable targets for development of chemotherapy against leishmaniasis. In the present study, various computational tools such as homology modelling, pharmacophore modelling, docking, molecular dynamics and molecular mechanics have been employed to design dual DHFR-TS and PTR1 inhibitors. Two designed molecules, i.e. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were synthesized. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed to evaluate in vitro activity of molecules against promastigote form of Leishmania donovani using Miltefosine as standard. 2-(4-((4-nitrobenzyl)oxy)phenyl)-1H-benzo[d]imidazole and 2-(4-((2,4-dichlorobenzyl)oxy)phenyl)-1H-benzo[d]oxazolemolecules were found to be moderately active with showed IC50 = 68 +/- 2.8 mu M and 57 +/- 4.2 mu M, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据