4.6 Review

Biochemical and structural characterization of DNA ligases from bacteria and archaea

期刊

BIOSCIENCE REPORTS
卷 36, 期 -, 页码 -

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BSR20160003

关键词

adenylate; antibacterial compounds; ATP; DNA ligase; enzyme inhibitors; beta-NAD(+)

资金

  1. University of East Anglia, Norwich, UK
  2. King's College London, UK

向作者/读者索取更多资源

DNA ligases are enzymes that seal breaks in the backbones of DNA, leading to them being essential for the survival of all organisms. DNA ligases have been studied from many different types of cells and organisms and shown to have diverse sizes and sequences, with well conserved specific sequences that are required for enzymatic activity. A significant number of DNA ligases have been isolated or prepared in recombinant forms and, here, we review their biochemical and structural characterization. All DNA ligases contain an essential lysine that transfers an adenylate group from a co-factor to the 5'-phosphate of the DNA end that will ultimately be joined to the 3'-hydroxyl of the neighbouring DNA strand. The essential DNA ligases in bacteria use beta-nicotinamide adenine dinucleotide (beta-NAD(+)) as their co-factor whereas those that are essential in other cells use adenosine-5'-triphosphate (ATP) as their cofactor. This observation suggests that the essential bacterial enzyme could be targeted by novel antibiotics and the complex molecular structure of beta-NAD(+) affords multiple opportunities for chemical modification. Several recent studies have synthesized novel derivatives and their biological activity against a range of DNA ligases has been evaluated as inhibitors for drug discovery and/or non-natural substrates for biochemical applications. Here, we review the recent advances that herald new opportunities to alter the biochemical activities of these important enzymes. The recent development of modified derivatives of nucleotides highlights that the continued combination of structural, biochemical and biophysical techniques will be useful in targeting these essential cellular enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据