4.7 Article

Modelling and optimization of modular system for power generation from a salinity gradient

期刊

RENEWABLE ENERGY
卷 141, 期 -, 页码 139-147

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2019.03.138

关键词

Renewable energy; Pressure retarded osmosis; Membrane technology; Salinity gradient; Process optimization

向作者/读者索取更多资源

Pressure retarded osmosis has been proposed for power generation from a salinity gradient resource. The process has been promoted as a promising technology for power generation from renewable resources, but most of the experimental work has been done on a laboratory size units. To date, pressure retarded osmosis optimization and operation is based on parametric studies performed on laboratory scale units, which leaves a gap in our understanding of the process behaviour in a full-scale modular system. A computer model has been developed to predict the process performance. Process modelling was performed on a full-scale membrane module and impact of key operating parameters such as hydraulic feed pressure and feed and draw solution rates were evaluated. Results showed that the optimum fraction of feed/draw solution in a mixture is less than what has been earlier proposed ratio of 50% and it is entirely dependent on the salinity gradient resource concentration. Furthermore, the optimized pressure retarded osmosis process requires a hydraulic pressure less than that in the normal (unoptimized) process. The results here demonstrate that the energy output from the optimized pressure regarded osmosis process is up to 54% higher than that in the normal (unoptimized) process. (C) 2019 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据