4.7 Article

Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution

期刊

REMOTE SENSING OF ENVIRONMENT
卷 233, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2019.111364

关键词

Microwave soil moisture; Land surface temperature; Downscaling; Random forest; Water resources management

资金

  1. National Natural Science Foundation of China [51579128, 91547210]
  2. National Key Research and Development Program of China [2017YFC0405801]

向作者/读者索取更多资源

Surface soil moisture (SSM), as a vital variable for water and heat exchanges between the land surface and the atmosphere, is essential for agricultural production and drought monitoring, and serves as an important boundary condition for atmospheric models. The spatial resolution of soil moisture products from microwave remote sensing is relatively coarse (e.g., similar to 40 km x 40 km), whereas SSM of higher spatiotemporal resolutions (e.g., 1 km x 1 km and daily continuous) is more useful in water resources management. In this study, first, to improve the spatiotemporal completeness of SSM estimates, we downscaled land surface temperature (LST) output from the China Meteorological Administration Land Data Assimilation System (CLDAS, 0.0625 degrees x 0.0625 degrees) using a data fusion approach and MODIS LST acquired on clear-sky days to generate spatially complete and temporally continuous LST maps across the North China Plain. Second, spatially complete and daily continuous 1 km x 1 km SSM was generated based on random forest models combined with quality LST maps, normalized difference vegetation index (NDVI), surface albedo, precipitation, soil texture, SSM background fields from the European Space Agency Soil Moisture Climate Change Initiative (CCI, 0.25 degrees x 0.25 degrees) and CLDAS land surface model (LSM) SSM output (0.0625 degrees x 0.0625 degrees) to be downscaled, and in situ SSM measurements. Third, the importance of different input variables to the downscaled SSM was quantified. Compared with the original CCI and CLDAS SSM, both the accuracy and spatial resolution of the downscaled SSM were largely improved, in terms of a bias (root mean square error) of -0.001 cm(3)/cm(3) (0.041 cm(3)/cm(3)) and a correlation coefficient of 0.72. These results are generally comparable and even better than those in published studies, with our SSM maps featuring spatiotemporal completeness and relatively high spatial resolution. The downscaled SSM maps are valuable for monitoring agricultural drought and optimizing irrigation scheduling, bridging the gaps between microwave-based and LSM-based SSM estimates of coarse spatial resolution and thermal infrared-based LST at a 1 km x 1 km resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据