4.4 Article

Cloning and characterization of a gene encoding MIZ1, a domain of unknown function protein and its role in salt and drought stress in rice

期刊

PROTOPLASMA
卷 257, 期 2, 页码 475-487

出版社

SPRINGER WIEN
DOI: 10.1007/s00709-019-01452-5

关键词

Drought; Salinity; Domain of unknown function 617; Hydrotropism

资金

  1. National Agriculture Science Fund (NASF), ICAR, New Delhi [Phen 2015/2011-12]

向作者/读者索取更多资源

Dwindling fresh water resources and climate change poses serious threats to rice production. Roots play crucial role in sensing water gradient and directing growth of the plant towards water through a mechanism called hydrotropism. Since very little information is available on root hydrotropism in major food crops, this study was carried out to clone and characterize an ortholog of Arabidopsis MIZU-KUSSEI1 (MIZ1) from rice. Contrasting rice genotypes for drought and salt tolerance were selected based on phenotyping for root traits. Nagina 22 and CR-262-4 were identified as most tolerant and Pusa Sugandh 5 and Pusa Basmati 1121 were identified as most susceptible varieties for both drought and salt stresses. Allele mining of MIZ1 in these varieties identified a 12 bp Indel but did not show specific allelic association with stress tolerance. Analysis of allelic variation of OsMIZ1 in 3024 rice genotypes of 3K genome lines using Rice SNP-Seek database revealed 49 InDels. Alleles with the 12 bp deletions were significantly prevalent in indica group as compared to that of japonica group. Real-time RT-PCR analysis revealed that OsMIZ1 expression levels were upregulated significantly in tolerant cv. Nagina 22 and CR-262-4 under osmotic stress, while under salt stress, it was significantly upregulated only in CR-262-4 but maintained in Nagina 22 under salt stress. However, in the roots of susceptible genotypes, OsMIZ1 expression decreased under both the stresses. These results highlight the possible involvement of OsMIZ1 in drought and salt stress tolerance in rice. Furthermore, expression studies using publically available resources showed that enhanced expression of OsMIZ1 is regulated in response to disease infections, mineral deficiency, and heavy metal stresses and is also expressed in reproductive tissues in addition to roots. These findings indicate potential involvement of MIZ1 in developmental and stress response processes in rice.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据