4.8 Article

Covariation of diet and gut microbiome in African megafauna

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1905666116

关键词

16S rRNA; DNA metabarcoding; megaherbivores; phylosymbiosis

资金

  1. Institute at Brown for Environment and Society
  2. Nature Conservancy's NatureNet Fellowship
  3. Princeton Environmental Institute
  4. Fund for New Ideas in the Natural Sciences from the Office of the Dean of Research at Princeton University
  5. Cameron Schrier Foundation
  6. NSF [DEB-1355122, DEB-1457697, IOS-1656527]

向作者/读者索取更多资源

A major challenge in biology is to understand how phylogeny, diet, and environment shape the mammalian gut microbiome. Yet most studies of nonhuman microbiomes have relied on relatively coarse dietary categorizations and have focused either on individual wild populations or on captive animals that are sheltered from environmental pressures, which may obscure the effects of dietary and environmental variation on microbiome composition in diverse natural communities. We analyzed plant and bacterial DNA in fecal samples from an assemblage of 33 sympatric large-herbivore species (27 native, 6 domesticated) in a semiarid East African savanna, which enabled high-resolution assessment of seasonal variation in both diet and microbiome composition. Phylogenetic relatedness strongly predicted microbiome composition (r = 0.91) and was weakly but significantly correlated with diet composition (r = 0.20). Dietary diversity did not significantly predict microbiome diversity across species or within any species except kudu; however, diet composition was significantly correlated with microbiome composition both across and within most species. We found a spectrum of seasonal sensitivity at the diet-microbiome nexus: Seasonal changes in diet composition explained 25% of seasonal variation in microbiome composition across species. Species' positions on (and deviations from) this spectrum were not obviously driven by phylogeny, body size, digestive strategy, or diet composition; however, domesticated species tended to exhibit greater diet-microbiome turnover than wildlife. Our results reveal marked differences in the influence of environment on the degree of diet-microbiome covariation in free-ranging African megafauna, and this variation is not well explained by canonical predictors of nutritional ecology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据