4.8 Article

Oscillatory recurrent gated neural integrator circuits (ORGaNICs), a unifying theoretical framework for neural dynamics

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1911633116

关键词

computational neuroscience; recurrent neural network; normalization; working memory; motor control

向作者/读者索取更多资源

Working memory is an example of a cognitive and neural process that is not static but evolves dynamically with changing sensory inputs; another example is motor preparation and execution. We introduce a theoretical framework for neural dynamics, based on oscillatory recurrent gated neural integrator circuits (ORGaNICs), and apply it to simulate key phenomena of working memory and motor control. The model circuits simulate neural activity with complex dynamics, including sequential activity and traveling waves of activity, that manipulate (as well as maintain) information during working memory. The same circuits convert spatial patterns of premotor activity to temporal profiles of motor control activity and manipulate (e.g., time warp) the dynamics. Derivative-like recurrent connectivity, in particular, serves to manipulate and update internal models, an essential feature of working memory and motor execution. In addition, these circuits incorporate recurrent normalization, to ensure stability over time and robustness with respect to perturbations of synaptic weights.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据