4.8 Article

Learning optimal decisions with confidence

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1906787116

关键词

decision making; diffusion models; optimality; confidence

资金

  1. James S. McDonnell Foundation Scholar Award [220020462]
  2. National Institute of Mental Health [R01MH115554]
  3. Swiss National Science Foundation [31003A_143707, 31003A_165831]
  4. Champalimaud Foundation
  5. European Research Council [250334, 671251]
  6. Human Frontier Science Program [RGP0027/2010]
  7. Simons Foundation [325057]
  8. Fundacao para a Ciencia e a Tecnologia
  9. European Research Council (ERC) [671251, 250334] Funding Source: European Research Council (ERC)
  10. Swiss National Science Foundation (SNF) [31003A_165831, 31003A_143707] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Diffusion decision models (DDMs) are immensely successful models for decision making under uncertainty and time pressure. In the context of perceptual decision making, these models typically start with two input units, organized in a neuron-antineuron pair. In contrast, in the brain, sensory inputs are encoded through the activity of large neuronal populations. Moreover, while DDMs are wired by hand, the nervous system must learn the weights of the network through trial and error. There is currently no normative theory of learning in DDMs and therefore no theory of how decision makers could learn to make optimal decisions in this context. Here, we derive such a rule for learning a near-optimal linear combination of DDM inputs based on trial-by-trial feedback. The rule is Bayesian in the sense that it learns not only the mean of the weights but also the uncertainty around this mean in the form of a covariance matrix. In this rule, the rate of learning is proportional (respectively, inversely proportional) to confidence for incorrect (respectively, correct) decisions. Furthermore, we show that, in volatile environments, the rule predicts a bias toward repeating the same choice after correct decisions, with a bias strength that is modulated by the previous choice's difficulty. Finally, we extend our learning rule to cases for which one of the choices is more likely a priori, which provides insights into how such biases modulate the mechanisms leading to optimal decisions in diffusion models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据