4.7 Article

Memory embedded non-intrusive reduced order modeling of non-ergodic flows

期刊

PHYSICS OF FLUIDS
卷 31, 期 12, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.5128374

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-SC0019290]
  2. agency of the United States Government
  3. U.S. Department of Energy (DOE) [DE-SC0019290] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

Generating a digital twin of any complex system requires modeling and computational approaches that are efficient, accurate, and modular. Traditional reduced order modeling techniques are targeted at only the first two, but the novel nonintrusive approach presented in this study is an attempt at taking all three into account effectively compared to their traditional counterparts. Based on dimensionality reduction using proper orthogonal decomposition (POD), we introduce a long short-term memory neural network architecture together with a principal interval decomposition (PID) framework as an enabler to account for localized modal deformation. As an effective partitioning tool for breaking the Kolmogorov barrier, our PID framework, therefore, can be considered a key element in the accurate reduced order modeling of convective flows. Our applications for convection-dominated systems governed by Burgers, Navier-Stokes, and Boussinesq equations demonstrate that the proposed approach yields significantly more accurate predictions than the POD-Galerkin method and could be a key enabler toward near real-time predictions of unsteady flows.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据