4.8 Article

BINARY JUNIPR: An Interpretable Probabilistic Model for Discrimination

期刊

PHYSICAL REVIEW LETTERS
卷 123, 期 18, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.123.182001

关键词

-

资金

  1. U.S. Department of Energy [DE-SC0013607]
  2. U.S. Department of Energy (DOE) [DE-SC0013607] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

JUNIPR is an approach to unsupervised learning in particle physics that scaffolds a probabilistic model for jets around their representation as binary trees. Separate JUNIPR models can be learned for different event or jet types, then compared and explored for physical insight. The relative probabilities can also be used for discrimination. In this Letter, we show how the training of the separate models can be refined in the context of classification to optimize discrimination power. We refer to this refined approach as BINARY JUNIPR. BINARY JUNIPR achieves state-of-the-art performance for quark-gluon discrimination and top tagging. The trained models can then be analyzed to provide physical insight into how the classification is achieved. As examples, we explore differences between quark and gluon jets and between gluon jets generated with two different simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据