4.4 Article

On the tensile flow stress response of 304 HCu stainless steel employing a dislocation density based model and electron backscatter diffraction measurements

期刊

PHILOSOPHICAL MAGAZINE
卷 100, 期 3, 页码 312-336

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786435.2019.1680887

关键词

Deformation; dislocations; EBSD; grain boundaries; microstructure; recovery

资金

  1. DAE
  2. IGCAR, India

向作者/读者索取更多资源

Tensile flow stress response of 304 HCu stainless steel is investigated using a dislocation density based model and electron backscatter diffraction (EBSD) studies. The model considers two types of dislocations explicitly, i.e. mobile and forest, to model the flow behaviour in the temperature range 300-973 K, at strain rates 3x10(-3) and 3x10(-5) s(-1). The flow behaviour indicates the predominance of thermal recovery at higher temperatures, except at 923 K/3x10(-5) s(-1). The dislocation model predicts a rapid increase in both mobile and forest dislocation densities at the early stages of deformation and thereafter reach saturation/steady state. Higher strain rate leads to an increase in dislocation densities with concomitant increase in peak flow stress, indicating significant dislocation multiplication. The dislocation densities decreased with an increasing temperature and is attributed to thermally activated recovery by glide (slip and cross-slip) and climb of dislocations. However, an offset to the thermal recovery is observed at 873-923 K at 3x10(-5) s(-1) wherein the magnitudes of peak flow stress, boundary and forest dislocation densities are of similar magnitude at both the temperatures, thereby signifying the occurrence of matrix hardening by DSA and precipitation. Boundary dislocation densities estimated from EBSD data have shown affinity to that of predicted forest dislocation densities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据