4.6 Article

DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural networks

期刊

OPTICS EXPRESS
卷 27, 期 24, 页码 35811-35822

出版社

Optica Publishing Group
DOI: 10.1364/OE.27.035811

关键词

-

类别

资金

  1. Ministry of Science, Technology and Space, Israel [3-13351, 3-18410]

向作者/读者索取更多资源

Several hyperspectral (HS) systems based on compressive sensing (CS) theory have been presented to capture HS images with high accuracy and with a lower number of measurements than needed by conventional systems. However, the reconstruction of HS compressed measurements is time-consuming and commonly involves hyperparameter tuning per each scenario. In this paper, we introduce a Convolutional Neural Network (CNN) designed for the reconstruction of HS cubes captured with CS imagers based on spectral modulation. Our Deep Neural Network (DNN), dubbed DeepCubeNet, provides significant reduction in the reconstruction time compared to classical iterative methods. The performance of DeepCubeNet is investigated on simulated data, and we demonstrate for the first time, to the best of our knowledge, real reconstruction of CS HS measurements using DNN. We demonstrate significantly enhanced reconstruction accuracy compared to iterative CS reconstruction, as well as improvement in reconstruction time by many orders of magnitude. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据