4.6 Article

Synthesis and optical properties of tunable dual emission copper doped CdTe1-xSex alloy nanocrystals

期刊

OPTICAL MATERIALS
卷 97, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.optmat.2019.109392

关键词

Alloy nanocrystals; Cu-doped CdTeSe; Dopant; Structure; Dual emission

资金

  1. Thai Nguyen University of Technology [T2019-B18]

向作者/读者索取更多资源

Tunable and dual emission Cu2+-doped CdTe1-xSex alloy nanocrystals (NCs) were successfully synthesized by the wet chemical method. The morphology and chemical compositions of the synthesized NCs were assessed by transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX). The structural and optical properties were characterized by X-ray diffraction (XRD), absorption spectroscopy (Abs), photo-luminescence (PL) spectroscopy, PL-decay lifetime. With the Cu2+ dopant concentration in the range of 0.5-5% and x of 0.5 in the precursors, the fabricated Cu2+-doped CdTe1-xSex NCs exhibited the dual emissions in the visible window at about 665 nm and near infrared window ranging from 830 to 840 nm which correspond to the excitonic emission of CdTe1-xSex NCs and Cu2+ dopant ions, respectively. With the increase in dopant concentration, the fluorescence lifetime of Cu-doped CdTe0.5Se0.5 NCs significantly improved (up to mu s) and the lattice constant of NCs decreased. By varying x from 0 to 1.0, both excitonic and dopant emissions of Cu-doped CdTe1-xSex NCs could be tuned in a wild range from 758 to 563 nm and from 918 to 748 nm, respectively. Interestingly, the crystal structure of these NCs changed gradually from the zinc blende (ZB) to wurtzite (WZ) structure when x increased. The results revealed that the dual emission, fluorescence lifetime and crystal structure of the Cu-doped NCs could be controlled by varying dopant concentration and chemical composition of the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据