4.6 Article

Floquet engineering of optical lattices with spatial features and periodicity below the diffraction limit

期刊

NEW JOURNAL OF PHYSICS
卷 21, 期 11, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/ab500f

关键词

Floquet; Hamiltonian engineering; subwavelength; stimulated Raman adiabatic passage (STIRAP); adiabaticity; pulse shaping; Kronig-Penney lattice

资金

  1. NSF PFC at JQI [PHY1430094]
  2. ONR [N000141712411]
  3. AFOSR
  4. ARL CDQI
  5. NSF PFC at JQI
  6. DoE ASCR Quantum Testbed Pathfinder program [DE-SC0019040]
  7. AROMURI
  8. NSF PFCQC program
  9. DoE BES QIS program [DE-SC0019449]
  10. NRC
  11. U.S. Department of Energy (DOE) [DE-SC0019449] Funding Source: U.S. Department of Energy (DOE)
  12. U.S. Department of Defense (DOD) [N000141712411] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Floquet engineering or coherent time-periodic driving of quantum systems has been successfully used to synthesize Hamiltonians with novel properties. In ultracold atomic systems, this has led to experimental realizations of artificial gauge fields, topological bandstructures, and observation of dynamical localization, to name a few. Here we present a Floquet-based framework to stroboscopically engineer Hamiltonians with spatial features and periodicity below the diffraction limit of light used to create them by time-averaging over various configurations of a 1D optical Kronig-Penney (KP) lattice. The KP potential is a lattice of narrow subwavelength barriers spaced by half the optical wavelength (lambda/2) and arises from the nonlinear optical response of the atomic dark state. Stroboscopic control over the strength and position of this lattice requires time-dependent adiabatic manipulation of the dark-state spin composition. We investigate adiabaticity requirements and shape our time-dependent light fields to respect the requirements. We apply this framework to show that a lambda/4-spaced lattice can be synthesized using realistic experimental parameters as an example, discuss mechanisms that limit lifetimes in these lattices, explore candidate systems and their limitations, and treat adiabatic loading into the ground band of these lattices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据