4.5 Article

Role of Oxidative Stress, MAPKinase and Apoptosis Pathways in the Protective Effects of Thymoquinone Against Acrylamide-Induced Central Nervous System Toxicity in Rat

期刊

NEUROCHEMICAL RESEARCH
卷 45, 期 2, 页码 254-267

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11064-019-02908-z

关键词

Acrylamide; Thymoquinone; MAP kinase signaling pathway; Cortex; Neuroprotective; Apoptosis

资金

  1. Vice Chancellor of Research, Mashhad University of Medical Sciences [931569] Funding Source: Medline

向作者/读者索取更多资源

The present study evaluated biochemical endpoints characterizing acrylamide (ACR) neurotoxicity in the cortex of rats, following the possible neuroprotective activity of thymoquinone (TQ), an active constituent of Nigella sativa. ACR (50 mg/kg, intraperitoneal [i.p.]) concurrently with TQ (2.5, 5 and 10 mg/kg, i.p.) for 11 days were administered to rats. As positive control, vitamin E was used. After 11 days of injections, narrow beam test (NBT) was performed. The levels of reduced glutathione (GSH) and malondialdehyde (MDA) were measured and Western blotting was done for mitogen-activated protein kinases (MAPKinases) and apoptosis pathways proteins in the rats' cortex. Additionally, Evans blue assay was done to evaluate the integrity of blood brain barrier (BBB). Administration of ACR significantly induced gait abnormalities. A significant decrease and increase in the levels of GSH and MDA was observed in the cortex of ACR-treated rats, respectively. The elevation in the levels of caspases 3 and 9, glial fibrillary acidic protein (GFAP) content, and Bax/Bcl-2, P-P38/P38 and P-JNK/JNK ratios accompanied by reduction in myelin basic protein (MBP) content and P-ERK/ERK ratio were noticed in the ACR group. TQ (5 mg/kg) improved gait abnormalities, and restored these changes. ACR affected the integrity of BBB while TQ was able to maintain the integrity of this barrier. TQ reversed the alterations in the protein contents of MAP kinase and apoptosis signaling pathways as well as MBP and GFAP contents, induced by ACR. It protected against ACR-mediated neurotoxicity, partly through its antioxidant and antiapoptotic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据