4.8 Article

Three-dimensional printing of multicomponent glasses using phase-separating resins

期刊

NATURE MATERIALS
卷 19, 期 2, 页码 212-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41563-019-0525-y

关键词

-

向作者/读者索取更多资源

Photopolymerization-induced phase separation of resins enables the high-resolution 3D printing of glass oxides with intricate shapes and distinct chemical composition. The digital fabrication of oxide glasses by three-dimensional (3D) printing represents a major paradigm shift in the way glasses are designed and manufactured, opening opportunities to explore functionalities inaccessible by current technologies. The few enticing examples of 3D printed glasses are limited in their chemical compositions and suffer from the low resolution achievable with particle-based or molten glass technologies. Here, we report a digital light-processing 3D printing platform that exploits the photopolymerization-induced phase separation of hybrid resins to create glass parts with complex shapes, high spatial resolutions and multi-oxide chemical compositions. Analogously to conventional porous glass fabrication methods, we exploit phase separation phenomena to fabricate complex glass parts displaying light-controlled multiscale porosity and dense multicomponent transparent glasses with arbitrary geometry using a desktop printer. Because most functional properties of glasses emerge from their transparency and multicomponent nature, this 3D printing platform may be useful for distinct technologies, sciences and arts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据