4.3 Article

Sb2S3 Thickness-Related Photocurrent and Optoelectronic Processes in TiO2/Sb2S3/P3HT Planar Hybrid Solar Cells

期刊

NANOSCALE RESEARCH LETTERS
卷 14, 期 1, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/s11671-019-3157-x

关键词

Solar cells; Sb2S3; Photocurrent; Optoelectronic processes

资金

  1. National Natural Science Foundation of China [21607041, 11747312, 11647306]
  2. China Scholarship Council [201708330103]
  3. Science and Technology Planning Project of Zhejiang Province, China [2017C33240]
  4. Zhejiang Provincial Natural Science Foundation of China [LQ14F040003]
  5. 1112 Talents Project of Huzhou city

向作者/读者索取更多资源

In this work, a comprehensive understanding of the relationship of photon absorption, internal electrical field, transport path, and relative kinetics on Sb2S3 photovoltaic performance has been investigated. The n-i-p planar structure for TiO2/Sb2S3/P3HT heterojunction hybrid solar cells was conducted, and the photon-to-electron processes including illumination depth, internal electric field, drift velocity and kinetic energy of charges, photo-generated electrons and hole concentration-related surface potential in Sb2S3, charge transport time, and interfacial charge recombination lifetime were studied to reveal the key factors that governed the device photocurrent. Dark J-V curves, Kelvin probe force microscope, and intensity-modulated photocurrent/photovoltage dynamics indicate that internal electric field is the main factors that affect the photocurrent when the Sb2S3 thickness is less than the hole diffusion length. However, when the Sb2S3 thickness is larger than the hole diffusion length, the inferior area in Sb2S3 for holes that cannot be diffused to P3HT would become a dominant factor affecting the photocurrent. The inferior area in Sb2S3 layer for hole collection could also affect the V-oc of the device. The reduced collection of holes in P3HT, when the Sb2S3 thickness is larger than the hole diffusion length, would increase the difference between the quasi-Fermi levels of electrons and holes for a lower V-oc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据