4.8 Article

Electronic structure of exfoliated millimeter-sized monolayer WSe2 on silicon wafer

期刊

NANO RESEARCH
卷 12, 期 12, 页码 3095-3100

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-019-2557-7

关键词

transition-metal dichalcogenides; WSe2; monolayer; electronic structure; angle-resolved photoemission spectroscopy

向作者/读者索取更多资源

The monolayer WSe2 is interesting and important for future application in nanoelectronics, spintronics and valleytronics devices, because it has the largest spin splitting and longest valley coherence time among all the known monolayer transition-metal dichalcogenides (TMDs). To obtain the large-area monolayer TMDs crystal is the first step to manufacture scalable and high-performance electronic devices. In this letter, we have successfully fabricated millimeter-sized monolayer WSe2 single crystals with very high quality, based on our improved mechanical exfoliation method. With such superior samples, using standard high resolution angle-resolved photoemission spectroscopy, we did comprehensive electronic band structure measurements on our monolayer WSe2. The overall band features point it to be a 1.2 eV direct band gap semiconductor. Its spin splitting of the valence band at K point is found as 460 meV, which is 30 meV less than the corresponding band splitting in its bulk counterpart. The effective hole masses of valence bands are determined as 2.344 me at Gamma, and 0.529 me as well as 0.532 me at K for the upper and lower branch of splitting bands, respectively. And screening effect from substrate is shown to substantially impact on the electronic properties. Our results provide important insights into band structure engineering in monolayer TMDs. Our monolayer WSe2 crystals may constitute a valuable device platform.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据