4.2 Article

Antimicrobial activity of GN peptides and their mode of action

期刊

BIOPOLYMERS
卷 106, 期 2, 页码 172-183

出版社

WILEY
DOI: 10.1002/bip.22796

关键词

antibacterial host defence peptides; membrane destabilization; antibacterial mode of action; anti-infective; bacterial lysis

向作者/读者索取更多资源

Increasing prevalence of bacteria that carries resistance towards conventional antibiotics has prompted the investigation into new compounds for bacterial intervention to ensure efficient infection control in the future. One group of potential lead structures for antibiotics is antimicrobial peptides due to their characteristics as naturally derived compounds with antimicrobial activity. In this study, we aimed at characterizing the mechanism of action of a small set of in silico optimized peptides. Following determination of peptide activity against E. coli, S. aureus, and P. aeruginosa, toxicity was assessed revealing meaningful selectivity indexes for the majority of the peptides. Investigation of the peptides effect on bacteria demonstrated a rapid growth inhibition with signs of bacterial lysis together with increased bacterial size. Both visual and quantitative assays clearly demonstrated bacterial membrane disruption after 10 min for the most active peptides. The membrane disrupting effect was verified by measuring the release of calcein from bacterial mimicking liposomes. This revealed the most active peptides as inducers of immediate release, indicating the kinetics of membrane permeabilization as an important determinant of bacterial activity. No well-defined secondary structure of the peptides could be determined using CD-spectroscopy in the presence of different liposomes mixtures, implying that there is no correlation between peptide secondary structure and the observed anti-bacterial and cytotoxic activity for this set of peptides. In conjunction, these findings provide strong indications of membrane disruption as the primary mechanism of bacterial growth inhibition for the tested peptides. (c) 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 172-183, 2016.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据