4.7 Article

Estimating covariance matrices for two- and three-point correlation function moments in Arbitrary Survey Geometries

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stz2896

关键词

methods: numerical; methods: statistical; galaxies: statistics; Cosmology: theory; large-scale structure of Universe

资金

  1. Herchel-Smith foundation
  2. U.S. Department of Energy [DE-SC0013718]
  3. FAS Division of Science, Research Computing Group at Harvard University
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. U.S. Department of Energy Office of Science
  7. University of Arizona
  8. Brazilian Participation Group
  9. Brookhaven National Laboratory
  10. Carnegie Mellon University
  11. University of Florida
  12. French Participation Group
  13. German Participation Group
  14. Harvard University
  15. Instituto de Astrofisica de Canarias
  16. Michigan State/Notre Dame/JINA Participation Group
  17. Johns Hopkins University
  18. Lawrence Berkeley National Laboratory
  19. Max Planck Institute for Astrophysics
  20. Max Planck Institute for Extraterrestrial Physics
  21. New Mexico State University
  22. New York University
  23. Ohio State University
  24. Pennsylvania State University
  25. University of Portsmouth
  26. Princeton University
  27. Spanish Participation Group
  28. University of Tokyo
  29. University of Utah
  30. Vanderbilt University
  31. University of Virginia
  32. University of Washington
  33. Yale University
  34. U.S. Department of Energy (DOE) [DE-SC0013718] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

We present configuration-space estimators for the auto- and cross-covariance of two- and three-point correlation functions (2PCF and 3PCF) in general survey geometries. These are derived in the Gaussian limit (setting higher order correlation functions to zero), but for arbitrary non-linear 2PCFs (which may be estimated from the survey itself), with a shot-noise rescaling parameter included to capture non-Gaussianity. We generalize previous approaches to include Legendre moments via a geometry-correction function calibrated from measured pair and triple counts. Making use of importance sampling and random particle catalogues, we can estimate model covariances in fractions of the time required to do so with mocks, obtaining estimates with negligible sampling noise in similar to 10 (similar to 100) CPU-hours for the 2PCF (3PCF) autocovariance. We compare results to sample covariances from a suite of BOSS DR12 mocks and find the matrices to be in good agreement, assuming a shot-noise rescaling parameter of 1.03 (1.20) for the 2PCF (3PCF). To obtain strongest constraints on cosmological parameters, we must use multiple statistics in concert; having robust methods to measure their covariances at low computational cost is thus of great relevance to upcoming surveys.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据